νεΓ Ι.Ι

Ribospin[™] Pathogen/TNA

DNA/RNA PURIFICATION HANDBOOK

Customer & Technical Support

Should you have any further questions, do not hesitate to contact us. We appreciate your comments and advice.

Contact Information

www.geneall.com Tel : 82-2-407-0096 Fax : 82-2-407-0779 E-mail (Order/Sales) : sales@geneall.com E-mail (Tech. Info.) : tech@geneall.com

Visit GeneAll[®] Community

www.geneall.com

Trademarks

Hybrid-QTM, ExprepTM, ExfectionTM, ExpinTM, ExgeneTM, GenExTM, DirExTM, Hybrid-RTM, RiboExTM, RibospinTM, RibospinTM, AllspinTM, RiboSaverTM, EzClearTM, EzSepTM, EzPureTM, EzPassTM, AmpONETM, AmpMasterTM, RealAmpTM, HyperScriptTM, ProtinExTM, PAGESTATM, STEADiTM, GENTiTM, SolMateTM are trademarks of GeneAll Biotechnology Co., Ltd.

© 2022 GeneAll Biotechnology, all rights reserved.

This protocol handbook is included in :

```
GeneAll<sup>®</sup> Ribospin<sup>™</sup> Pathogne/TNA (341-150, 341-152)
```

Visit www.geneall.com for FAQ, Q&A and more information.

Brief protocol

Rapid protocol for fluid samples (serum/cell media/body fluid)

Standard protocol for fluid samples (serum/cell media/body fluid)

INDEX

- Brief Protocols (Rapid/Standard) 04
 - Index 07
 - Kit Contents 08
 - Materials Not Provided
 - Product Specifications 09 Quality Control Storage Conditions
- Safety Information 10 Product Disclaimer Preventing RNase Contamination Proteinase K
- Product Description **II** Sample amount and expected yield

Protocols

- A. Protocol for Body fluid/Cultured cells (Rapid protocol) 12
- B. Protocol for Body fluid/Cultured cells (Standard protocol) 14
 - C. Protocol for Whole blood 16
 - D. Protocol for Tissue 18
 - E. Protocol for Stool/Fecal swab 20
- F. Protocol for Saliva, Nasopharyngeal aspirates, Buccal swabs 22
 - G. Protocol for Raw milk 24
 - H. Protocol for Dried blood spot 26
 - I. Protocol for Gram positive bacteria 28
 - Troubleshooting Guide 30
 - Appendix I. DNase I treatment in eluate 32
 - Appendix II. RNase A treatment in eluate 33
 - Ordering Information 34

Kit Contents

Cat. No.	341-150	341-152	
Туре	m	Storage	
Components	Qua		
No. of preparation	50	250	
Column Type P (mini)	50	250	
1.5 ml microcentrifuge tube	50	250	
Buffer SL	34 ml	160 ml	
Buffer KL	20 ml	85 ml	
Buffer BL	l 5 ml	60 ml	Room
Buffer RB1 (concentrate) *	5 ml	I7 ml	temperature
Buffer RBW (concentrate) *	l 8 ml	77 ml	(15~25°C)
Buffer RNW (concentrate) *	8 ml	34 ml	
Nuclease-free water	l 5 ml	90 ml	
PK Storage buffer	I.5 ml	7 ml	
Proteinase K **	24 mg	I 20 mg	
Protocol Handbook	1	I	

* Before first use, add absolute ethanol (ACS grade or better) into Buffer RB I, RBW, RNW as indicated on the bottle.

** For the long-term storage of Proteinase K, store at 4°C. But after reconstitution of Proteinase K store at -20°C. Refer to instruction of Proteinase K on page 10.

Materials Not Provide

• Reagent : Absolute ethanol (ACS grade or better)

Powerbead[™] tube (Protocol for Stool, Cat. No. 114-990 [50], 114-991 [6]). 30 mg/ml lysozyme (LYS702, Bioshop, Canada, or equivalent) 300 µg/ml lysostaphin (L7386, SIGMA, USA, or equivalent) Buffer GP (106-900~106-905, GeneAll, Korea)

- Disposable material : RNase-free pipette tips, Disposable gloves
- Equipment : Equipment for homogenizing sample, Microcentrifuge, Vortex mixer, Suitable protector

Product Specifications

Ribospin [™] Pathogen/TNA				
Spin				
Liquid sample : 200 µl/prep				
Solid sample : 20 mg/prep				
Cultured cell : 5 x 10 ⁶ /prep				
≥30 min				
750 <i>µ</i> I				
30 µl				

Quality Control

All components in GeneAll[®] Ribospin[™] Pathogen/TNA are manufactured in strictly clean condition, and its degree of cleanness is monitored periodically. Quality control is carried out thoroughly from lot to lot, and only the qualified kits are approved to be delivered.

Storage Conditions

All components of GeneAll[®] Ribospin[™] Pathogen/TNA should be stored at room temperature (15~25°C). It should be protected from exposure to direct sunlight. During shipment or storage under cool ambient condition, a precipitate can be formed in Buffer KL and BL. In such a case, heat the bottle to 56°C to dissolve completely. Using precipitated buffers will lead to poor DNA/RNA recovery. GeneAll[®] Ribospin[™] Pathogen/TNA is guaranteed until the expiration date printed on the product box.

Safety Information

The buffers included in GeneAll[®] Ribospin[™] Pathogen/TNA contain irritants which are harmful when in contact with skin or eyes, or when inhaled or swallowed. Care should be taken when handling such materials. Always wear gloves and eye protection, and follow standard safety precautions.

Buffer KL and BL contains chaotropic agents, which can form highly reactive compounds when combined with bleach.

Do NOT add bleach or acidic solutions directly to the sample-preparation waste.

Product Disclaimer

GeneAll[®] Ribospin[™] Pathogen/TNA is for research use only, not for use in diagnostic procedure.

Preventing RNase Contamination

RNase can be introduced accidentally during RNA purification. Wear disposable gloves always, because skin often contains bacteria and molds that can be a source of RNase contamination. Use sterile, disposable plastic wares and automatic pipettes to prevent cross-contamination of RNase from shared equipment.

Proteinase K

This kit provides Proteinase K and PK Storage buffer for dissolving Proteinase K. Reconstituted Proteinase K serves efficient viral lysis for most sample types. Proteinase K solution should be stored under 4°C for conservation of activity. It can be stored at 4°C for 1 year without significant decrease in activity.

To store for extended periods of time, it is recommended to store under -20°C.

Product Description

The GeneAll[®] Ribospin[™] Pathogen/TNA kit provides a flexible format for the purification of the Pathogen and Total Nucleic Acids (TNA) from various samples such as serum, body fluid, tissues, whole blood, bacteria, swab, stool, raw milk and virus-infected samples.

The GeneAll[®] Ribospin[™] Pathogen/TNA kit uses utilizes the advanced silica-binding technology to purify the total nucleic acids that become sufficiently pure for many applications. Viral samples are lysed in the optimized buffer comprising detergent and lytic enzyme. Under optimized binding conditions, nucleic acids in the lysate bind to silica membrane and impurities pass through the membranes into a collection tube.

The membranes are washed with a series of alcohol-containing buffers to remove traces of proteins, cellular debris and salts.

Finally, pure nucleic acids are released into a clean microcentrifuge tube with deionized water or low ionic strength buffer. The elute should be treated carefully because RNA are very sensitive to contaminants such as RNases, often found on general labware and dust.

Purified nucleic acids can be used directly for PCR, qPCR, RT-PCR, or any downstream application without further manipulation.

Sample amount and expected yield

Sample	Starting amount	Yield (µg)
Cultured cell	5 x 10 ⁶	60~90
Whole blood (Human)	200 <i>µ</i> I	2~6
Whole blood (Pig)	200 <i>µ</i> I	10~20
Heart	20 mg	20~50
Lung	20 mg	80~120
Spleen	10 mg	100~130
Stomach	20 mg	60~100
Intestein	20 mg	100~130
Liver	20 mg	50~80
Kidney	20 mg	60~100
Brain	20 mg	20~50
Stool (Pig)	50 mg	10~30
Raw milk	l ml	2~4

A. PROTOCOL FOR Body fluid/Cultured cells (Rapid protocol)

Before experiment

- Before using for the first time, add absolute ethanol (ACS grade or better). into Buffer RB I, RBW and RNW as indicated on the bottle.
- Prepare 1.5 ml microcentrifuge tube.
- All centrifugation should be performed at room temperature.
- Prepare Proteinase K solution (20 mg/ml) for first use.
- If a precipitate has formed in Buffer KL, heat to dissolve at 56°C before use.

I. Transfer 200 μ l of sample to the 1.5 ml microcentrifuge tube. Use the starting sample listed below.

If the sample volume is less than 200 μ l, adjust the volume to 200 μ l with 1X PBS.

Sample	Max. amount per prep	Preparation		
Cultured cells or lymphocyte	5 x 10 ⁶ cells	5 x 10° cells in 200 μ l of 1 X PBS		
Body fluid	200 <i>µ</i> I	Direct use		
Serum	200 <i>µ</i> I	Direct use		
Virus in culture median	200 <i>µ</i> I	200 μ l of virus-containing media		

2. Add 20 μ l of Proteinase K solution (20 mg/ml, provided) and 200 μ l of Buffer KL to the sample. Vortex vigorously to mix thoroughly.

3. Incubate at 20~25°C for 5 min.

Changing the incubation temperature to 56°C may increase the extraction efficiency of bacteria, but it is not recommended as the changed condition of lysis could not preserve the RNA integrity.

4. Add 300 μ l of Buffer RBI to the sample, pulse-vortex to mix the sample thoroughly, and spin down briefly to remove any drops from inside of the lid.

- 5. Transfer the mixture to the Column Type P (mini) carefully, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 6. Add 600 μ l of Buffer RBW to the mini column, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 7. Add 600 μ l of Buffer RNW to the mini column, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 8. Centrifuge at full speed for 1 min and remove residual wash buffer. Place the mini column into a fresh 1.5 ml microcentrifuge tube.
- Add 50 μl of nuclease-free water to the center of the membrane in the mini column.
 Incubate at room temperature for 1 min.
- 10. Centrifuge at full speed for 1 min.

B. PROTOCOL FOR Body fluid/Cultured cells (Standard protocol)

Before experiment

- Before using for the first time, add absolute ethanol (ACS grade or better). into Buffer RB1, RBW and RNW as indicated on the bottle.
- Prepare 1.5 ml microcentrifuge tube.
- All centrifugation should be performed at room temperature.
- Prepare Proteinase K solution (20 mg/ml) for first use.
- If a precipitate has formed in Buffer KL, heat to dissolve at 56°C before use.
- I. Transfer 200 μ I of sample to the 1.5 ml microcentrifuge tube. Use the starting sample listed below.

If the sample volume is less than 200 μ l, adjust the volume to 200 μ l with IX PBS.

Sample	Max. amount per prep	Preparation		
Cultured cells or lymphocyte	5×10^{6} cells	5 x 10° cells in 200 μ l of 1 X PBS		
Body fluid	200 <i>µ</i> I	Direct use		
Serum	200 <i>µ</i> I	Direct use		
Virus in culture median	200 <i>µ</i> I	200 μ l of virus-containing media		
Gram-negative bacteria	Up to 2 x 10 ⁹ cells	2×10^9 cells in 200 μ l of 1 X PBS		

2. Add 200 μ l of Buffer SL to the sample and vortex to mix thoroughly.

3. Add 20 μ l of Proteinase K solution (20 mg/ml, provided) and 200 μ l of Buffer KL to the sample. Vortex vigorously to mix thoroughly.

4. Incubate at 20~25°C for 10 min.

Changing the incubation temperature to 56°C may increase the bacteria DNA recovery, but it is not recommended as the changed condition of lysis could not preserve the RNA integrity.

- 5. Add 300 μ l of Buffer RBI to the sample, pulse-vortex to mix the sample thoroughly, and spin down briefly to remove any drops from inside of the lid.
- 6. Transfer the mixture to the Column Type P (mini) carefully, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 7. Repeat step 6 with the remainder of the sample.
- 8. Add 600 μ l of Buffer RBW to the mini column, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 9. Add 600 μ l of Buffer RNW to the mini column, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 10. Centrifuge at full speed for 1 min and remove residual wash buffer. Place the mini column into a fresh 1.5 ml microcentrifuge tube.
- II. Add 50 μ I of nuclease-free water to the center of the membrane in the mini column. Incubate at room temperature for I min.
- 12. Centrifuge at full speed for 1 min.

C. PROTOCOL FOR Whole blood

Before experiment

- Before using for the first time, add absolute ethanol (ACS grade or better). into Buffer RB I, RBW and RNW as indicated on the bottle.
- Prepare 1.5 ml microcentrifuge tube.
- All centrifugation should be performed at room temperature.
- Prepare Proteinase K solution (20 mg/ml) for first use.
- If a precipitate has formed in Buffer BL, heat to dissolve at 56°C before use.
- I. Transfer 200 μ I of whole blood to the 1.5 ml microcentrifuge tube.
- 2. Add 200 μ l of Buffer SL to the sample and vortex to mix thoroughly.
- Add 20 μl of Proteinase K solution (20 mg/ml, provided) and 200 μl of <u>Buffer BL</u> to the sample. Vortex vigorously to mix thoroughly.

Use Buffer BL instead of Buffer KL in the case of blood samples. The Buffer KL can cause blood clotting.

4. Incubate at 20~25°C for 10 min.

Changing the incubation temperature to 56°C may increase bacteria DNA recovery, but it is not recommended as changed condition of lysis could not preserve RNA integrity.

- 5. Add 300 μ l of Buffer RBI to the sample, pulse-vortex to mix the sample thoroughly, and spin down briefly to remove any drops from inside of the lid.
- 6. Transfer the mixture to the Column Type P (mini) carefully, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.

- 7. Repeat step 6 with the remainder of the sample.
- 8. Add 600 μ l of Buffer RBW to the mini column, centrifuge at 10,000 x g above for I min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 9. Add 600 μ l of Buffer RNW to the mini column, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 10. Centrifuge at full speed for 1 min and remove residual wash buffer. Place the mini column into a fresh 1.5 ml microcentrifuge tube.
- II. Add 50 μ I of nuclease-free water to the center of the membrane in the mini column. Incubate at room temperature for I min.
- 12. Centrifuge at full speed for 1 min.

D. PROTOCOL FOR Tissue

Before experiment

- Before using for the first time, add absolute ethanol (ACS grade or better). into Buffer RB1, RBW and RNW as indicated on the bottle.
- Prepare 1.5 ml microcentrifuge tube.
- All centrifugation should be performed at room temperature.
- Prepare Proteinase K solution (20 mg/ml) for first use.
- If a precipitate has formed in Buffer KL, heat to dissolve at 56°C before use.
- Homogenize up to 10~20 mg of tissue as described in step 1-1, 1-2 or 1-3, depending on the sample type.

Homogenizing the sample finely will accelerate lysis and decrease the lysis time. For spleen or stomach tissue, up to 10 mg can be processed.

- 1-1 For soft tissue, such as liver or brain, put up to 20 mg of the tissue into 1.5 ml microcentrifuge tube (not provided), add 300 μ l of Buffer SL, and homogenize thoroughly with microhomogenizer.
- 1-2 If microhomogenizer is not available or the tissue is not soft, grind the tissue to a fine powder with liquid nitrogen in a pre-chilled mortar and pestle. Put up to 20 mg of the powdered tissue into 1.5 ml microcentrifuge tube. Add 300 μ l of Buffer SL and pulse-vortex for 15 sec.
- I-3 If neither 1a nor 1b is available, mince the tissue with sharp blade or scalpel as small as possible. Put the tissue into a 1.5 ml microcentrifuge tube.
 Add 300 µl of Buffer SL and pulse-vortex for 15 sec.
 - *** Alternatively, tissue samples can be effectively homogenized using some instruments, such as a rotor-stator homogenizer or a bead-beater.
- 2. Incubate at room temperature for 5 min.

3. (Optional:) If many air bubbles form from the samples, spin down briefly within 20 sec at 13,000 rpm to remove the bubbles and not the homogenized tissue piece.

Do not exceed 20 sec to increase extraction efficiency of bacteria, exceed 20 sec of centrifugation lead to sink bacteria.

- 4. Transfer 200 μ l of the lysate except the bubbles and piece of tissues to the new 1.5 ml microcentrifuge tube.
- 5. Add 20 μ l of Proteinase K solution (20 mg/ml, provided) and 200 μ l of Buffer KL and to the tube. Vortex vigorously to mix thoroughly.
- 6. Incubate at room temperature for 10 min.
- 7. Add 300 μ l of Buffer RBI to the sample, pulse-vortex to mix the sample thoroughly, and spin down briefly to remove any drops from inside of the lid.
- 8. Transfer the mixture to the Column Type P (mini) carefully, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 9. Add 600 μ l of Buffer RBW to the mini column, centrifuge at 10,000 x g above for I min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 10. Add 600 μ l of Buffer RNW to the mini column, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- II. Centrifuge at full speed for I min and remove residual wash buffer. Place the mini column into a fresh I.5 ml microcentrifuge tube.
- 12. Add 50~200 μ l of nuclease-free water to the center of the membrane in the mini column. Incubate at room temperature for 1 min.
- 13. Centrifuge at full speed for 1 min.
- **14.** Dilute the elute to 20~250 ng/µl to use the template for RT-PCR or PCR. Tissue samples usually have many cells. The total nucleic acid of cells from animal tissue can be competitors with the nucleic acid of the pathogen in PCR reactions.

E. PROTOCOL FOR Stool/Fecal swab

Before experiment

- Before using for the first time, add absolute ethanol (ACS grade or better). into Buffer RB I, RBW and RNW as indicated on the bottle.
- Prepare 1.5 ml microcentrifuge tube.
- All centrifugation should be performed at room temperature.
- Prepare Proteinase K solution (20 mg/ml) for first use.
- If a precipitate has formed in Buffer KL, heat to dissolve at 56°C before use.
- 1. Collect the samples as described in step 1-1, 1-2 depending on the sample type.

I-I Stool

: Add up to 50 mg of stool sample to a 1.5 ml microcentrifuge tube.

To increase the extraction efficiency and purity, using a PowerbeadTM tube instead of a 1.5 ml micocentrifuge tube is recommended. The PowerbeadTM tube is not provided in this kit. The PowerbeadTM tube can be purchased separately (Cat. No. 114-990 [50], 114-991 [6]).

I-2 Fecal swab

- : Vortex fecal swab tube vigorously to mix thoroughly and transfer 200 μ l of the sample to a 1.5 ml microcentrifuge tube.
- 2. Add 600 μ l of Buffer SL to the tube and vortex for 2 min or until the stool sample is thoroughly homogenized.

It is important to homogenize the sample thoroughly. Insufficient homogenization time and condition is related to low recovery yield.

3. Centrifuge the samples as described in step 3-1, 3-2 depending on the pathogen type.

• 3-1 For extraction of virus;

Centrifuge at 13,000 rpm for 5 min at room temperature and carefully transfer the 300 μ l of supernatant to a 1.5 ml microcentrifuge tube.

***3-2** For extraction of bacteria and nucleic acid of stool;

Centrifuge at 1,000 rpm for 30 sec at room temperature and carefully transfer the 300 μl of supernatant to a 1.5 ml microcentrifuge tube.
Centrifugation at 1,000 rpm for 30 sec is for the sinking debris of stool.
Do not exceed 30 sec to increase the extraction efficiency of bacteria, exceeding 30 sec of centrifugation can lead to sink bacteria.

- 4. Add 20 μ l of Proteinase K solution (20 mg/ml, provided) and 300 μ l of Buffer KL to the sample. Vortex vigorously to mix thoroughly.
- 5. Incubate at 20~25°C for 5 min.
- 6. Add 300 μ l of Buffer RBI to the sample, pulse-vortex to mix the sample thoroughly, and spin down briefly to remove any drops from inside of the lid.
- 7. Transfer the mixture to the Column Type P (mini) carefully, centrifuge at 6,000 x g above (>8,000 rpm) for I min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 8. Repeat step 7 with the remainder of the sample.
- 9. Add 600 μ l of Buffer RBW to the mini column, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 10. Add 600 μ l of Buffer RNW to the mini column, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- II. Centrifuge at full speed for I min and remove residual wash buffer. Place the mini column into a fresh I.5 ml microcentrifuge tube.
- 12. Add 50~200 μ l of nuclease-free water to the center of the membrane in the mini column. Incubate at room temperature for 1 min.

PCR inhibitor in samples such as stool can obstruct PCR reaction. Dilute the elute to use the template for PCR reactions.

13. Centrifuge at full speed for 1 min.

F. PROTOCOL FOR

Saliva, Nasopharyngeal aspirates, Buccal swabs

Before experiment

- Before using for the first time, add absolute ethanol (ACS grade or better). into Buffer RB I, RBW and RNW as indicated on the bottle.
- Prepare 1.5 ml microcentrifuge tube.
- All centrifugation should be performed at room temperature.
- Prepare Proteinase K solution (20 mg/ml) for first use.
- If a precipitate has formed in Buffer KL, heat to dissolve at 56°C before use.
- 1. Collect the samples as described in step 1-1, 1-2 depending on the sample type.
 - +I-I Saliva

: 400 μ l of saliva in a 1.5 ml microcentrifuge tube. add 600 μ l of 1X PBS to the sample and vortex until the saliva sample is thoroughly homogenized.

Collect saliva on ice and as quickly as possible or use RNA protect saliva reagent. Because the RNA in saliva is unstable and easy to degrade.

I-2 Nasopharyngeal aspirates

- : Collect 1 ml of nasopharyngeal aspirates in a 1.5 ml microcentrifuge tube and vortex until the sample is thoroughly homogenized.
- I-3 Buccal swab
 - : Vortex buccal swab tube vigorously to mix thoroughly and transfer 300 μ l of the sample to a 1.5 ml microcentrifuge tube.
- 2. Centrifuge the samples as described in step 2-1, 2-2 depending on the pathogen type.

+2-1 For extraction of virus;

I) Centrifuge at 13,000 rpm for 5 min at room temperature and carefully transfer the 200 μl of supernatant to a 1.5 ml microcentrifuge tube.

2) Add 200 μ l of Buffer SL to the sample and vortex vigorously to mix.

- *2-2 For extraction of bacteria and nucleic acid of saliva;
 I) Centrifuge at 13,000 rpm for 5 min at room temperature and carefully discard the supernatant.
 2) Add 200 μl of Buffer SL to the pellet and resuspend completely the pellets in Buffer SL.
- 3. Add 20 μ l of Proteinase K solution (20 mg/ml, provided) and 300 μ l of Buffer KL to the sample. Vortex vigorously to mix thoroughly.
- 4. Incubate at 20~25°C for 5 min.
- 5. Add 300 μ l of Buffer RBI to the sample, pulse-vortex to mix the sample thoroughly, and spin down briefly to remove any drops from inside of the lid.
- 6. Transfer the mixture to the Column Type P (mini) carefully, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 7. Repeat step 6 with the remainder of the sample.
- 8. Add 600 μ l of Buffer RBW to the mini column, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 9. Add 600 μ l of Buffer RNW to the mini column, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 10. Centrifuge at full speed for 1 min and remove residual wash buffer. Place the mini column into a fresh 1.5 ml microcentrifuge tube.
- II. Add 50 μ I of nuclease-free water to the center of the membrane in the mini column. Incubate at room temperature for I min.
- 12. Centrifuge at full speed for 1 min.

G. PROTOCOL FOR

Raw milk

This pretreatment is for the extraction of the bacteria and the nucleic acid of raw milk. It is not suitable for virus because of the centrifugation step.

Before experiment

- Before using for the first time, add absolute ethanol (ACS grade or better). into Buffer RB1, RBW and RNW as indicated on the bottle.
- Prepare 1.5 ml microcentrifuge tube.
- All centrifugation should be performed at room temperature.
- Prepare Proteinase K solution (20 mg/ml) for first use.
- If a precipitate has formed in Buffer KL, heat to dissolve at 56°C before use.
- I. Transfer I ml of raw milk to the 1.5 ml microcentrifuge tube.
- 2. Centrifuge at 10,000 x g above for 5 min at room temperature and discard the supernatant containing fat and liquid layer.
- 3. Add 200 μ l of Buffer SL to the pellet and resuspend completely the pellets in Buffer SL.
- 4. Add 20 μl of Proteinase K solution (20 mg/ml, provided) and 200 μl of Buffer KL to the sample. Vortex vigorously to mix thoroughly.
- 5. Incubate at 20~25°C for 5 min.
- 6. Add 300 μ l of Buffer RBI to the sample, pulse-vortex to mix the sample thoroughly, and spin down briefly to remove any drops from inside of the lid.
- 7. Transfer the mixture to the Column Type P (mini) carefully, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.

- 8. Add 600 μ l of Buffer RBW to the mini column, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 9. Add 600 μ l of Buffer RNW to the mini column, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- Centrifuge at full speed for 1 min and remove residual wash buffer.
 Place the mini column into a fresh 1.5 ml microcentrifuge tube.
- 11. Add 50 μ l of nuclease-free water to the center of the membrane in the mini column.

Incubate at room temperature for 1 min.

12. Centrifuge at full speed for 1 min.

H. PROTOCOL FOR Dried blood spot

Before experiment

- Before using for the first time, add absolute ethanol (ACS grade or better). into Buffer RB1, RBW and RNW as indicated on the bottle.
- Prepare 1.5 ml microcentrifuge tube.
- All centrifugation should be performed at room temperature.
- Prepare Proteinase K solution (20 mg/ml) for first use.
- If a precipitate has formed in Buffer BL, heat to dissolve at 56°C before use.

* This protocol is suitable for blood, both untreated and treated with anticoagulants, which has been spotted and dried on filter paper (Schleicher and Schuell 903 or any equivalent).

1. Place $3 \sim 4$ punched-out circles from a dried blood spot into a 1.5 ml microcentrifuge tube and add 200 μ l of Buffer SL.

Use a 3 mm (1/8") single-hole paper puncher to cut out the circles from a dried blood spot.

2. Incubate at 56°C for 10 min. Spin down briefly to remove any drops from inside of the lid.

Do not incubate for more than 15 min.

3. Add 20 μ l of Proteinase K solution (20 mg/ml, provided) and 200 μ l of <u>Buffer BL</u> to the sample. Vortex vigorously to mix thoroughly and spin down briefly to remove any drops from inside of lid.

Use Buffer BL instead of Buffer KL in the case of blood samples. The Buffer KL can cause blood clotting.

- 4. Incubate at 56°C for 10 min.
- 5. Transfer the lysate except paper to the 1.5 ml mi microcentrifuge tube.

- 6. Add 300 μ l of Buffer RBI to the sample, pulse-vortex to mix the sample thoroughly, and spin down briefly to remove any drops from inside of the lid.
- 7. Transfer the mixture to the Column Type P (mini) carefully, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 8. Add 600 μ l of Buffer RBW to the mini column, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 9. Add 600 μ l of Buffer RNW to the mini column, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- Centrifuge at full speed for 1 min and remove residual wash buffer.
 Place the mini column into a fresh 1.5 ml microcentrifuge tube.
- II. Add 50 μ I of nuclease-free water to the center of the membrane in the mini column. Incubate at room temperature for I min.
- 12. Centrifuge at full speed for 1 min.

. PROTOCOL FOR Gram positive bacteria

Before experiment

- Before using for the first time, add absolute ethanol (ACS grade or better). into Buffer RB I, RBW and RNW as indicated on the bottle.
- Prepare 1.5 ml microcentrifuge tube.
- All centrifugation should be performed at room temperature.
- Prepare Proteinase K solution (20 mg/ml) for first use.
- If a precipitate has formed in Buffer KL, heat to dissolve at 56°C before use.

• **Prepare Enzyme Mixture;** Resuspend the appropriate enzyme (not provided, listed below) with Buffer GP (not provided, listed below) just before use. Enzyme mixture should be stored at -20°C (or below) as small aliquots; ideally, once per an aliquot. Thawed aliquot should be discarded.

30 mg/ml lysozyme (LYS702, Bioshop, Canada, or equivalent) or/and 300 µg/ml lysostaphin (L7386, SIGMA, USA, or equivalent) Buffer GP (106-900~106-905, GeneAll, Korea)

* For certain species, such as *Staphylococcus*, treatment of lysostaphin (final conc. = $300 \mu g/ml$) may be required for efficient lysis instead of (or with) lysozyme. However, lysozyme is sufficient to lyse the cell wall for most gram positive bacterial strains.

- I. Harvest cells (up to $2 \times 10^{\circ}$ cells) in a 1.5 ml microcentrifuge tube by centrifugation at full speed for 1 min. Discard the supernatant.
- 2. Resuspend the cell pellet thoroughly in 180 μ l of the prepared enzyme mixture. Incubate at 37°C for 30 min.

The purpose of this treatment is to weaken the cell wall so that efficient cell lysis can take place.

- 3. Add 200 μ l of Buffer SL to the sample. Vortex to mix thoroughly.
- 4. Add 20 μ l of Proteinase K solution (20 mg/ml, provided) and 200 μ l of Buffer KL to the sample. Vortex vigorously to mix thoroughly.
- 5. Incubate at 20~25°C for 5 min.
- 6. Add 300 μ l of Buffer RBI to the sample, pulse-vortex to mix the sample thoroughly, and spin down briefly to remove any drops from inside of the lid.
- 7. Transfer the mixture to the Column Type P (mini) carefully, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 8. Repeat step 7 with the remainder of the sample.
- 9. Add 600 μ l of Buffer RBW to the mini column, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- 10. Add 600 μ l of Buffer RNW to the mini column, centrifuge at 10,000 x g above for 1 min, and discard the pass-through and reinsert the mini column back into the collection tube.
- Centrifuge at full speed for 1 min and remove residual wash buffer.
 Place the mini column into a fresh 1.5 ml microcentrifuge tube.
- 12. Add 50 μ I of nuclease-free water to the center of the membrane in the mini column. Incubate at room temperature for I min.
- 13. Centrifuge at full speed for 1 min.

Troubleshooting Guide

Facts	Possible Causes	Suggestions
Low yield	Poor quality of starting material	Too old or improperly stored sample often yield degraded DNA/RNA. Use fresh sample, if possible. Repeated freezing and thawing the sample should be avoided.
	Low cells in the sample	Some samples such as serum/plasma may have low concentration of cells. To increase the binding efficiency of the nucleic acid, it is recommended to use Carrier RNA. Carrier RNA can be purchased separately (Cat. No. 118-962 [270 μ g], 118~963 [370 μ g]).
	Inefficient or insufficient lysis	For proper lysis, the complete mix of sample and Buffer KL is essential.
	Improper elution	Add Nuclease-free water to the center of the mini column membrane and perform incubation for I min before centrifugation.
	Precipitation of Buffer KL and BL	Storage at cool ambient temperature may cause precipitation in Buffer KL and BL. For a good result, any precipitate in the buffer should be dissolved by heating the buffer at 37°C or above until it disappears.
	Degradation of RNA	RNase can be introduced during purification of nucleic acid. Be certain not to introduce any RNases during the procedure or later handling. Keep tubes closed whenever possible during the extraction and use RNase-free products with sterile and disposable plastic ware.
	Column clogging	Reduce the amount of starting sample. Especially tissue sample, use the correct amount of starting sample.

Facts	Possible Causes	Suggestions
	PCR inhibitors present in samples	PCR inhibitor in samples such as stool can obstruct PCR reaction. Dilute the elute to use the template for PCR reactions.
	Too high concentration of cells in animal tissues	Tissue samples usually have many cells. The total nucleic acid of cells from animal tissue can be competitors with the nucleic acid of the pathogen in PCR reactions. Dilute the elute to 20~250 ng to use the template for PCR reactions.
Eluate does not perform well In downstream Application	Buffer RBI, RBW, or RNW was prepared incorrectly	Check that the concentrated Buffer RBI, RBW, and RNW were diluted with the correct volume of absolute ethanol.
	Residual ethanol from Buffer RNW remains in elute	Care must be taken for eliminating the carryover of Buffer RNW before elution step. The membrane of mini spin column should be kept completely dry via additional centrifugation or air-drying.
	Use of Buffer RBW and RNW in the wrong order	Ensure that Buffer RBW and RNW are used in the correct order in the protocol. If used in the wrong order, perform the last washing step with RNW.

APPENDIX I

DNase I treatment in eluate

Treatment with DNase I is an optional step to eliminate DNA in eluate depending on purpose of experiment.

Appendix I describes how to use the DNase I (Not included in this kit).

This procedure is more efficient than on-column DNase I treatment.

Protocol

- I. Prepare the mixture as below in a 1.5 ml microcentrifuge tube.
 - 50 µl eluate
 - 5 µl Buffer DRB
 - I µI DNase I solution (Cat. No. 307-928)
- 2. Incubate the mixture for 10 min at room temperature.
- 3. Add I μ I 0.25 M EDTA per 50 μ I eluate.
- 4. Inactivate DNase I enzyme at 75°C for 10 min.

* For efficient DNase I treatment and clean-up of eluated RNA, use of RiboclearTM plus (Cat.No. 313-150) is suggested.

Related product

Product	Cat. No.	Size	Features and Benefits
			- Preparation time : ~17 min - High recovery rate : ~95%
Riboclear™ plus 313-150 50 prep	- E	- Efficient removal of genomic DNA including DNase I	
	50 prep	- Stable and consistent yield	
			- Concentrated RNA eluate using micro column - Complete removal of salt and enzymes - No use of organic solvents, no ethanol precipitation

APPENDIX II

RNase A treatment in eluate

Treatment with RNase A is an optional step to eliminate RNA in eluate depending on purpose of experiment.

Appendix II describes how to use the RNase A (Not included in this kit).

Protocol

- 1. Prepare the mixture as below in a 1.5 ml microcentrifuge tube. - 50 μ l eluate
 - 4 µl RNase solution (100 mg/ml, Cat. No. 117-960)
- 2. Vortex to mix thoroughly.
- 3. Incubate the mixture for 10 min at 37°C.

Ordering Information

GeneAll* Hybrid-Q TM for rapid preparation of plasmid DNA Basmid Rapidprep mini 50 100-150 spin GeneAll* Exprep mini 50 100-150 spin Midi 50 101-150 spin Midi 50 101-150 spin Plasmid SV Midi 50 101-1250 spin Midi 50 101-120 vacuum Midi 50 111-150 spin Tespretation of transfection-grade plasmid DNA mini 100 106-152 vacuum Midi 50 111-150 spin / 250 106-152 vacuum Midi 200 111-120 vacuum Midi 20 121-20 vacuum GeneAll* Spin / 100 111-201 vacuum GeneAll* Midi 20 102-150 spin / Cell SV mini 50 103-150 spin / Cell SV mini 50 103-150 spi	Products	Scale	Size	Cat. No.	Туре	Products	Scale	Size	Cat. No.	Туре
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GeneAll® Hybri d	I-Q[™] for	rapid p	reparation of	plasmid DNA	GeneAll® Exgene	тм _{for iso}	plation c	f total DNA	
Mini 1 200 100-102 spin Mini 1 250 105-152 vacuum GeneAll* Exprep TM for preparation of plasmid DNA Midi 200 101-150 spin / Midi 26 105-320 spin / Plasmid SV 26 101-250 spin / Midi 26 105-320 vacuum Plasmid SV 26 101-250 spin / mini 100 100 105-201 vacuum GeneAll* ExprepTM 26 101-250 spin / mini 1250 106-152 vacuum Plasmid LE for preparation of transfection-grade plasmid DNA for preparation of transfection rade p	Plasmid Rapidprep		50	100-150				100	105-101	spin /
GeneAll® Exprep TM for preparation of plasmid DNA mini $\frac{50}{200}$ $101-150$ $spin / to the section of the sectin the section of the section of the sectin the section$		mini	200	100-102	spin		mini	250	105-152	vacuum
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							N.C. P.	26	105-226	spin /
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GeneAll [®] Expre	o [™] for pr	eparatio	on of plasmid l	DNA	Blood 2V	l™lidi	100	105-201	vacuum
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			50	101-150	spin /		MANZI	10	105-310	spin /
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		mini	200	101-102	vacuum		MAXI	26	105-326	vacuum
Plasmid SV Midi 50 101-250 spin / vacuum GeneAll* Exfection*** spin / vacuum for preparation of transfection-grade plasmid DNA mini 50 111-150 spin / Plasmid LE (Low Endotoxin) mini 50 111-150 spin / Plasmid LE (Low Endotoxin) Midi 26 111-226 spin / Plasmid EF (Low Endotoxin) Midi 20 121-220 spin / GeneAll* Expin ** for purfication of fragment DNA mini 26 108-226 spin / Genomic DNA micro 50 1121-201 spin / vacuum Maxi 10 108-310 spin / Genomic DNA micro 50 102-150 spin / vacuum Maxi 10 117-201 vacuum PCR SV mini 50 102-150 spin / vacuum Soil DNA mini mini 50 113-150 spin / CleanUp SV mini 50 112-150 spin / vacuum Soil			26	101-226				100	106-101	spin /
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Plasmid SV	Midi	50	101-250	spin /		mini	250	106-152	vacuum
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			100	101-201	vacuum	Cell SV	MAXI	10	106-310	spin /
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GeneAll® Exfect	ion TM					MAXI	26	106-326	vacuum
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	for prepo	ration of t	ransfec	tion-grade pla	smid DNA		mini	100	108-101	spin /
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			50	- 50	spin /		111111	250	108-152	vacuum
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Plasmid LE	mini	200	- 02	vacuum	Clinic SV	Midi	26	108-226	spin /
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(Low Endotoxin)	N.C. P.	26	111-226	spin /	CIINIC SV	PILO	100	108-201	vacuum
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Midi	100	-20	vacuum		MAVI	10	108-310	spin /
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Plasmid EE	N de le	20	121-220			MAXI	26	108-326	vacuum
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(Endotoxin Free)	Midi	100	2 -20	spin	Genomic DNA micro		50	8-050	spin
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								100	7- 0	spin /
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GeneAll [®] Expin ^T	м for þuri	fication	of fragment D	NA		mini	250	7- 52	vacuum
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			50	102-150	spin /		M: J:	26	117-226	spin /
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gel SV	mini	200	102-102	vacuum	Plant SV	I™IIdi	100	7-20	vacuum
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			50	103-150	spin /		MANZI	10	7-3 0	spin /
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PCR SV	mini	200	00 103-102 vacuum	MANI	26	7-326	vacuum		
$ \begin{array}{c c c c c c c c } \hline CleanUp SV & mini & 100 & 112 & 100 & yain/ \\ \hline 200 & 113 & 102 & yacuum \\ \hline Combo GP & mini & 50 & 112 & 150 & spin / \\ \hline 200 & 112 & 102 & yacuum \\ \hline Combo GP & mini & 50 & 112 & 150 & spin / \\ \hline 200 & 112 & 102 & yacuum \\ \hline \\ $			50	113-150	spin /	Soil DNA mini	mini	50	4- 50	spin
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CleanUp SV	mini	200	113-102	vacuum	Stool DNA mini	mini	50	5- 50	spin
Combo GP mini $\frac{10}{200}$ $112 \cdot 102$ $spin / vacuum$ $Viral DNA / RNA$ mini 50 $128 \cdot 150$ $spin$ GeneAll® Exgene TM for isolation of total DNA mini 100 $104 \cdot 101$ $spin / vacuum$ $FFPE Tissue DNA$ $mini$ 50 $128 \cdot 150$ $spin$ Tissue SV $\frac{100}{100}$ $104 \cdot 152$ $vacuum$ $GeneAll^{®} GenEx^{TM}$ for isolation of total DNA without spin column Midi $\frac{26}{100}$ $104 \cdot 201$ $vacuum$ $GenEx^{TM}$ Blood Sx $\frac{100}{500}$ $220 \cdot 101$ $solution$ Max1 10 $104 \cdot 310$ $spin / 250$ $spin / 250$ $spin / 250$ $solution$ Tissue plus! SV $\frac{Midi}{26}$ $109 \cdot 201$ $spin / 26$			50	112-150	spin /	Stool-Bead DNA mini	mini	50	5- 5	spin
The rest of the interval of the in	Combo GP	mini	200	112-102	vacuum	Viral DNA / RNA	mini	50	28- 50	spin
GeneAll® Exgene TM for isolation of total DNA mini 100 104-101 spin / Tissue SV $\frac{100}{100}$ 104-122 spin / vacuum for isolation of total DNA GeneAll® GenEx TM for isolation of total DNA without spin column Midi $\frac{26}{100}$ 104-201 vacuum $\frac{6enEx^{TM} Blood}{500}$ $\frac{220-101}{500}$ solution MAXI 10 104-310 spin / $\frac{100}{250}$ 109-101 spin / $\frac{100}{250}$ solution Tissue plus! SV $\frac{100}{26}$ 109-201 spin / $\frac{100}{220-101}$ solution Midi $\frac{26}{100}$ 109-201 vacuum $\frac{6enEx^{TM} Cell}{10}$ $\frac{5x}{500}$ $\frac{100}{221-101}$ solution Tissue plus! SV $\frac{Midi}{100}$ $\frac{26}{109-226}$ spin / $\frac{100}{222-101}$ solution MAXI $\frac{10}{26}$ $109-310$ spin / $\frac{100}{222-101}$ solution MAXI $\frac{10}{26}$ $109-320$ spin / $\frac{100}{222-301}$ solution				112 102				50	38- 50	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GeneAll® Exgen	e TM for iso	plation c	of total DNA		THE HISSUE DINA	ITHII	250	38- 52	spin
Imini 250 104-152 vacuum GeneAll® GenEx TM for isolation of total DNA without spin column Tissue SV Midi $\frac{26}{100}$ 104-201 vacuum $\frac{6}{100}$ $\frac{10}{220-101}$ solution MAXI $\frac{10}{26}$ 104-310 spin / $\frac{10}{26}$ $\frac{104-326}{104-326}$ vacuum $\frac{6enEx^{TM}}{Blood}$ $\frac{5x}{500}$ $\frac{100}{220-101}$ solution mini $\frac{100}{250}$ 109-101 spin / $\frac{100}{500}$ $\frac{221-101}{500}$ solution Tissue plus! SV Midi $\frac{26}{100}$ $\frac{109-226}{100}$ spin / $\frac{100}{222-101}$ solution MAXI $\frac{26}{100}$ $\frac{109-220}{100}$ spin / $\frac{100}{222-101}$ solution MAXI $\frac{26}{100}$ $\frac{109-310}{26}$ spin / $\frac{100}{222-101}$ solution MAXI $\frac{10}{26}$ $\frac{109-320}{26}$ $\frac{109}{200}$ $\frac{100}{222-301}$ solution		mini	100	04- 0	spin /					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TTHEFT	250	104-152	vacuum	GeneAll [®] GenEx'	for isolo	ation of t	otal DNA with	out spin colum
$\frac{100 104-201 vacuum}{100 104-201 vacuum} = \frac{6enEx^{TM} \text{ Blood}}{6enEx^{TM} \text{ Cell}} = \frac{3x}{500} = \frac{500}{220-105} = \frac{5000}{500} = \frac{220-105}{500} = \frac{5000}{220-101} = \frac{500}{500} = \frac{500}{221-101} = \frac{500}{500} = \frac{500}{222-101} = \frac{500}{500} = \frac{500}{50} = \frac{500}{50$	Time OV	Midi	26	104-226	spin /		<u>.</u>	100	220-101	and stars
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	lissue SV	PIIDI	100	104-201	vacuum	GenEx [™] Blood	SX	500	220-105	SOlUTION
$\frac{100}{100} \frac{100}{250} \frac{100}{100} \frac{100}{100}{100} \frac{100}{100} \frac{100}{10} \frac{100}{10} \frac{100}{10} \frac{100}{10} 1$			10	04-3 0	spin /		Lx	100	220-301	solution
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		MAXI	26	104-326	vacuum		C	100	221-101	a di alta a
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			100	109-101	spin /	GenEx™ Cell	SX	500	221-105	solution
Tissue plus! SV Midi 26 109-226 spin / vacuum Midi 100 109-201 vacuum MAXI 10 109-310 spin / vacuum 26 109-326 vacuum		mini	250	109-152	vacuum		Lx	100	221-301	solution
Issue plus: Sv Midi 100 109-201 vacuum GenEx TM Tissue Sx 500 222-105 solution MAXI 10 109-310 spin / Lx 100 222-301 solution	T	NC. P	26	109-226	spin /		c	100	222-101	a a lu a'
MAXI 10 109-310 spin / Lx 100 222-301 solution	i issue plus! SV	Midi	100	109-201	vacuum	GenEx [™] Tissue	SX	500	222-105	solution
MAXI 26 109-326 vacuum			10	109-310	spin /		Lx	100	222-301	solution
		MAXI	26	109-326	vacuum					

Products So	cale Size	Cat. No.	Туре
-------------	-----------	----------	------

GeneAll[®] GenExTM for isolation of total DNA

	Sx	100	227-101	
GenEx [™] Plant	Mx	100	227-201	solution
	Lx	100	227-301	
	Sx	100	228-101	
GenEx [™] Plant plus!	Mx	50	228-250	solution
	Lx	20	228-320	

GeneAll[®] AmpONE[™] for PCR amplification

Products

Scale Size Cat. No.

Туре

	250 U	501-025			
Taq DNA polymerase		500 U	501-050	(2.5 U/µI)	
		1,000 U	501-100		
Tra Dramin	20 μ l x 96 tubes		526-200	colution	
Taq Premix	50 μ l x 96 tubes		526-500	SOlUTION	

GeneAll[®] DirEx[™] series

for preperation of PCR-template without extraction

DirEx™	100	250-101	solution
DirEx [™] <i>Fast</i> -Tissue	96 T	260-011	solution
DirEx [™] <i>Fast</i> -Cultured cell	96 T	260-021	solution
DirEx [™] Fast-Whole blood	96 T	260-03 I	solution
DirEx [™] <i>Fast</i> -Blood stain	96 T	260-041	solution
DirEx [™] <i>Fast</i> -Hair	96 T	260-051	solution
DirEx [™] <i>Fast</i> -Buccal swab	96 T	260-061	solution
DirEx [™] <i>Fast</i> -Cigarette	96 T	260-071	solution

GeneAll[®] RNA series for preperation of total RNA

PiboEv TM	mini	100	301-001	adution	
RIDOEX	mini	200	301-002	SOLUTION	
Hybrid-R [™]	mini	100	305-101	spin	
Hybrid-R [™] Blood RNA	mini	50	315-150	spin	
Hybrid-R [™] miRNA	mini	50	325-150	spin	
Riber VTM L S	mini	100	302-001	adution	
RIDOEX LS	mini	200	302-002	solution	
Riboclear™	mini	50	303-150	spin	
Riboclear [™] plus!	mini	50	3 3- 50	spin	
Ribospin™	mini	50	304-150	spin	
	mini -	50	3 4- 50		
Ridospin II		300	3 4- 03	spin	
Ribospin [™] vRD	mini	50	302-150	spin	
Ribospin [™] vRD <i>plus!</i>	mini	50	3 2- 50	spin	
Ribospin [™] vRD II	mini	50	322-150	spin	
Ribospin [™] Plant	mini	50	307-150	spin	
Ribospin [™] Seed / Fruit	mini	50	317-150	spin	
Allspin™	mini	50	306-150	spin	
RiboSaver™	mini	100	351-001	solution	

GeneAll[®] AmpMaster[™] for PCR amplification

Te a Maatau asiy	0.5 ml x 2 tubes	541-010	solution
laq Master mix	0.5 ml x 10 tubes	541-050	solution

GeneAll[®] HyperScriptTM for Reverse Transcription

Reverse Transcriptase	10,000 U	601-100	solution
RT Master mix	0.5 ml x 2 tubes	601-710	solution
One-step RT-PCR Master mix	0.5 ml x 2 tubes	602-110	solution
One-step RT-PCR Premix	20 µl x 96 tubes	602-102	solution

GeneAll[®] RealAmp[™] for qPCR amplification

SYBR qPCR Master	200 rxn	2 ml	801-020	and at an
mix (2X, Low ROX)	500 rxn	5 ml	801-050	solution
SYBR qPCR Master	200 rxn	2 ml	801-021	colution
mix (2X, High ROX)	500 rxn	5 ml	801-051	SOIULION

Products	Scale	Size	Cat. No.	Туре
				./

Products	Scale	Size	Ca
Troducto	ocure	UILC	~

e Cat. No. Type

GeneAll [®] Protein series				
ProtinEx [™] Animal cell / tissue	100 ml	701-001		

PAGESTA™			
Reducing		751 001	a a bratiana
5X SDS-PAGE	I mi × 10 tubes	/31-001	solution
Sample Buffer			

solution

GeneAll [®] GENTi ^{TM 3}	² Ultin autor	nately flexible matic extracti	on system
Automatic extraction equipment		GTI032A	system
Canamia DNIA	48	901-048A	tube
Genomic DINA	96	901-096A	plate
Viral DNA / RNA	48	902-048A	tube
	96	902-096A	plate
Plant DNA / RNA	48	904-048A	tube
	96	904-096A	plate

GeneAll[®] STEAD i^{TM} for automatic nucleic acid puritication

12 Instrument		GST012	system
24 Instrument		GST024	system
Genomic DNA Cell / Tissue	96	401-104	kit
Genomic DNA Blood	96	402-105	kit
Total RNA	96	404-304	kit
Viral DNA / RNA	96	405-322	kit
Genomic DNA Plant	96	407-117	kit
Soil DNA	96	408-114	kit

GeneAll [®] GENTi ^{™ 32}	Ultimately flexible automatic extraction system		on system
Automatic extraction equipment		GT1032	system
	48	901-048	tube
Genomic DINA	96	901-096	plate
Viral DNA / RNA	48	902-048	tube
	96	902-096	plate
Whole Blood Genomic DNA	48	903-048	tube
	96	903-096	plate

NOTE

NOTE

NOTE

GENEALL BIOTECHNOLOGY CO., LTD

GeneAll Bldg., 303-7, Dongnamro, Songpa-gu, Seoul, Korea 05729 E-mail : sales@geneall.com Tel. 82-2-407-0096 Fax. 82-2-407-0779 www.geneall.com

Manufacturer site

A-1201~A-1204, Hanam Techno Valley UI Center, 947, Hanam-daero, Hanam-si, Gyeonggi-do, 12982, Korea

©2022 GeneAll Biotechnology, All rights reserved